翻訳と辞書
Words near each other
・ Atmosphere of Mercury
・ Atmosphere of Pluto
・ Atmosphere of the Moon
・ Atmosphere of Titan
・ Atmosphere of Triton
・ Atmosphere of Uranus
・ Atmosphere of Venus
・ Atmosphere Visual Effects
・ Atmosphere-Space Interaction Monitor
・ Atmosphere-Space Transition Region Explorer
・ Atmospheres (album)
・ Atmospheres (TV series)
・ Atmospheric carbon cycle
・ Atmospheric chemistry
・ Atmospheric Chemistry and Physics
Atmospheric chemistry observational databases
・ Atmospheric circulation
・ Atmospheric Circulation Reconstructions over the Earth
・ Atmospheric convection
・ Atmospheric correction
・ Atmospheric diffraction
・ Atmospheric dispersion modeling
・ Atmospheric diving suit
・ Atmospheric duct
・ Atmospheric dynamo
・ Atmospheric electricity
・ Atmospheric entry
・ Atmospheric Environment
・ Atmospheric escape
・ Atmospheric focusing


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Atmospheric chemistry observational databases : ウィキペディア英語版
Atmospheric chemistry observational databases

Over the last two centuries many atmospheric chemical observations have been made from a variety of ground-based, airborne, and orbital platforms and deposited in databases. Many of these databases are publicly available. All of the instruments mentioned in this article give online public access to their data. These observations are critical in developing our understanding of the Earth's atmosphere and issues such as climate change, ozone depletion and air quality. Some of the external links provide repositories of many of these datasets in one place. For example, the Cambridge Atmospheric Chemical Database, is a large database in a uniform ASCII format. Each observation is augmented with the meteorological conditions such as the temperature, potential temperature, geopotential height, and equivalent PV latitude.
==Ground-based and balloon observations==

* NDSC observations. The (Network for the Detection for Stratospheric Change ) (NDSC) is a set of high-quality remote-sounding research stations for observing and understanding the physical and chemical state of the stratosphere. Ozone and key ozone-related chemical compounds and parameters are targeted for measurement. The NDSC is a major component of the international upper atmosphere research effort and has been endorsed by national and international scientific agencies, including the International Ozone Commission, the United Nations Environment Programme (UNEP), and the World Meteorological Organization (WMO). The primary instruments and measurements are: Ozone lidar (vertical profiles of ozone from the tropopause to at least 40 km altitude; in some cases tropospheric ozone will also be measured). Temperature lidar (vertical profiles of temperature from about 30 to 80 km). Aerosol lidar (vertical profiles of aerosol optical depth in the lower stratosphere). Water vapor lidar (vertical profiles of water vapor in the lower stratosphere). Ozone microwave (vertical profiles of stratospheric ozone from 20 to 70 km). H2O microwave (vertical profiles water vapor from about 20 to 80 km). ClO microwave (vertical profiles of ClO from about 25 to 45 km, depending on latitude). Ultraviolet/Visible spectrograph (column abundance of ozone, NO2, and, at some latitudes, OClO and BrO). Fourier Transform Infrared spectrometer (column abundances of a broad range of species including ozone, HCl, NO, NO2, ClONO2, and HNO3).
* MkIV observations. The (MkIV ) Interferometer is a Fourier Transform Infra-Red (FTIR) Spectrometer, designed and built at the Jet Propulsion Laboratory in 1984, to remotely sense the composition of the Earth's atmosphere by the technique of solar absorption spectrometry. This was born out of concern that man-made pollutants (e.g. chlorofluorocarbons, aircraft exhaust) might perturb the ozone layer. Since 1984, the MkIV Interferometer has participated in 3 NASA DC-8 polar aircraft campaigns, and has successfully completed 15 balloon flights. In addition, the MkIV Interferometer made over 900 days of ground-based observations from many different locations, including McMurdo, Antarctica in 1986.
* Sonde observations. The (World Ozone and Ultraviolet Radiation Data Centre ) (WOUDC) is one of five World Data Centres which are part of the Global Atmosphere Watch (GAW) programme of the World Meteorological Organization (WMO). The WOUDC is operated by the Experimental Studies Division of the Meteorological Service of Canada (MSC) — formerly Atmospheric Environment Service (AES), Environment Canada and is located in Toronto. The WOUDC began as the World Ozone Data Centre (WODC) in 1960 and produced its first data publication of Ozone Data for the World in 1964. In June 1992, the AES agreed to a request from the WMO to add ultraviolet radiation data to the WODC. The Data Centre has since been renamed to the World Ozone and Ultraviolet Radiation Data Centre (WOUDC) with the two component parts: the WODC and the World Ultraviolet Radiation Data Centre (WUDC).

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Atmospheric chemistry observational databases」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.